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a case appears to be operative. As such, one may introduce
an approximation whereby excitations occurring withinWe present a technique for embedding clusters of atoms, which

are to be treated quantum mechanically, in ionic crystals by repre- these centers are only weakly coupled to the nonlocalized
senting the external lattice by classical lattice-centered Gaussian conduction and valence band states. Within this approxi-
charge distributions. The goal is to carry out ab initio self-consistent mation, no formal coupling is attempted, but instead, local-field calculations of the many-electron ground and excited states

ized states are calculated quantum mechanically within theof finite clusters representing defects in an otherwise perfect crystal
defect region under the influence of an effective coulombiclattice. We describe a procedure for determining the effective

charges and Gaussian exponents describing the external lattice so field representing the surrounding host lattice.
that, together with Hartree–Fock force calculations, the net forces In many areas of experimental spectroscopy there is a
on the quantum mechanical cluster ions are zero in the ground

need to calculate the many-electron ground and excitedstate. The result of this procedure is the production of an external
states of impurity/defect centers in crystals. In many casescoulombic field that has the same symmetry as the crystal, exactly

balances the quantum mechanical forces, and simultaneously ac- one wishes to obtain the energies of excited states which
counts for the fact that the external charge distribution is finite. The possess the same spatial and spin symmetry as the ground
method is illustrated by considering the formation of the F-center state. At present, the only generally applicable and feasible
defect in CaF2 . Q 1996 Academic Press, Inc.

nonperturbative method for this is multiconfigurational
complete active-space self-consistent field (CASSCF).
This method is fully implemented in the GAUSSIAN 92I. INTRODUCTION
[1] quantum chemical program system. However, since
GAUSSIAN 92 has its origins in quantum chemistry, itA crucial difference between isolated molecular and
presently lacks a sophisticated embedding methodology.crystal defect electronic structure calculations rests in the
Thus, it is the purpose of this article to present an embed-treatment of the crystal field. For free-space calculations
ding procedure that can be implemented within the contextthe forces on the atoms in a molecule are determined solely
of the GAUSSIAN 92 program system and thus withinon the basis of their interactions with the other cluster
the context of being able to perform follow-on CASSCFatoms and, in the ground state the net forces on the atoms
calculations. Toward this end, we develop an approximateare zero. However, for a defect in a solid, the known
cluster embedding methodology exploiting a key featuregeometry of a representative cluster generally would not
in GAUSSIAN 92 which permits the inclusion into thecorrespond to the stable geometry for that cluster in free
Fock operator terms reflecting a distribution of either ex-space. Another important distinction is that, for ab initio
ternal point ions or external Gaussian charge distributions.molecular calculations, the atoms in a cluster are typically
This capability allows for Hartree–Fock SCF, configura-treated at the same level of quantum chemical theory so
tion interaction, and CASSCF calculations on a quantumthat, for instance, the forces, geometry, and electronic

structure of the entire system are determined solely on cluster in the presence of an external arrangement of
charge which is used to represent a perfect crystal latticethe basis of an approximate solution to the Schrödinger

equation. However, depending on which properties one [2, 3]. Also provided is an option to calculate forces on
the cluster nuclei which arise from interactions with otherwishes to calculate and depending upon whether one can

reasonably assume that these properties are described ade- cluster nuclei and the overall cluster electronic charge den-
sity suitably perturbed by the presence of an externalquately by localized wave functions, then an alternative

approach is to define regions of interest. For impurity/ charge distribution.
For this technique we define two regions of interest,defect centers in ionic crystals which present themselves

as deep, localized energy states within the band gap such namely, the quantum cluster and, an external charge distri-
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bution. The quantum cluster consists of that portion of the
perfect crystal that is to be treated quantum mechanically
and will ultimately contain the defect. The external ions are
treated classically and are represented by lattice-centered
Gaussians of the form qi(ai /f)3/2 exp(2ai ur-Rex

i u2). The
parameters qi and ai , represent the overall charge and
Gaussian exponent respectively of an external ion at
Rex

i . In developing an embedding scheme one must have
a known point of reference in order to ascertain when
the embedding process is complete. Since the equilibrium
geometry of the nondefective cluster is known, we have
chosen to establish an external charge distribution such
that the net forces on the cluster ions are zero. To achieve
this, the parameters qi and ai , are adjusted in conjunction
with Hartree–Fock force calculations to stabilize the clus-
ter in the ground state. The interactions within the external FIG. 1. Diagram of the nondefective cluster, (Ca4F7)11. The ions
charge distribution contribute to the overall energy of the are arranged at the experimental Ca-F distance of 2.3656 Å [11]. SCF

calculations based on this cluster are used to determine the embeddingsystem and are treated classically. By the end of the embed-
lattice parameters.ding procedure, an effective external coulombic field is

produced in the quantum cluster region that has the same
symmetry as the crystal, exactly balances the quantum me-
chanical forces on the cluster ions, and simultaneously minimize the energy (as with ICECAP), or minimize the
accounts for the fact that the external charge distribution cluster forces at the experimental geometry (as with our
is finite. method).

To illustrate this method we consider the formation of
the F-center defect in CaF2 . It should be noted that while

II. CLUSTER EMBEDDING
the following iterative embedding scheme will be per-
formed at the Hartree–Fock level of theory, in principle A. Overview of the Method
SCF force calculations based on correlated methods such

We start with the nondefective cluster shown in Fig. 1.as CI singles and doubles (CISD) or CASSCF are possible.
This figure shows the (Ca4F7)11 cluster that will be treatedWe note that other lattice-embedded electronic struc-
quantum mechanically and serves to define the coordinateture programs have evolved over the last decade. Perhaps
system. The ions are arranged at the experimental Ca-Fthe most advanced is the ICECAP program system [4].
distance of 2.366 Å [11]. After embedding, the F-centerICECAP possesses a sophisticated cluster embedding tech-
defect will be formed from this cluster by the removal ofnology based on the Kunz–Klein localizing potential [5]
the central F2 ion to form a vacancy, the addition of anand the classical shell model for the external lattice [6] and
electron, and geometry relaxation. Referring to the flow-has been applied to a variety of systems [7, 8]. Presently,
chart in Fig. 2, the embedding method consists of the fol-however, ICECAP lacks the CASSCF capability. Thus,
lowing stages.within the ICECAP program system, states other than the

ground state can only be analyzed by applying symmetry (1) Construct the nondefective quantum cluster. This
constraints to the calculation. cluster is the portion of the perfect crystal that is to be

Finally, mention should also be made of some recent treated quantum mechanically and will ultimately contain
work on the embedding problem by Winter, Pitzer, and the defect. The geometry of this cluster is chosen to be
Temple [9] and Martin and Hay [10]. The external lattice that of the perfect crystal as known experimentally. Opti-
is modeled by placing l-dependent effective core potentials mize the basis set, choose the CASSCF active spaces.
on some or all of the ions external to the quantum cluster.

(2) Perform an SCF calculation for the cluster in isola-These potentials are determined by fitting to a linear com-
tion to determine the forces on the cluster ions F(0)

clus(Rj).bination of Gaussians the core potentials obtained from
The force calculated on each cluster ion is the result of itsnumerical Hartree–Fock calculations of the free atom.
electrostatic interaction with the other cluster nuclei andThis method has achieved a certain degree of success in
with the cluster SCF electronic charge density.predicting the geometry for the NaF:Cu system. However

this method, unlike ICECAP and the technique presented (3) Construct around this cluster a point ion field con-
sisting of representative point charges for the ions in thein this article, does not iterate between SCF cluster calcula-

tions and external lattice parameter adjustments to either crystal. These external point charges are assigned the va-
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(5) Using the charges and Gaussian exponents deter-
mined in the previous step, perform another SCF force
calculation to determine the new cluster forces F (n)

clus(Rj ).
These new SCF forces will be different from the previous
SCF cluster forces since the SCF density must now react
to the presence of the new external charge distribution.
While the SCF density does reflect the presence of the
external arrangement of charge, the force on a particular
cluster ion calculated by GAUSSIAN 92 does not include
the direct coulombic interactions between the cluster nu-
cleus and the external lattice. Presently, these interactions
must be included separately.

(6) The net force on the cluster nuclei, F (n)
net(Rj ), is

F (n)
ext(Rj ) 1 F (n)

clus(Rj ). If the net forces are not negligible
then increment the iteration counter and determine new
Gaussian lattice parameters to balance the SCF cluster
forces. This process of SCF force calculations and external
charge variation is continued until convergence is achieved.
When the net forces on the cluster nuclei become negligible
the embedding procedure is complete. Note that during
this entire process the geometry of the nondefective cluster
is maintained at the experimentally known perfect crystal
geometry. At the end of this process one is left with a
system consisting of a nondefective quantum cluster and
an external lattice-centered Gaussian charge distribution
such that the forces calculated quantum mechanically
within the cluster are exactly balanced by the forces exerted
electrostatically by the external charge.

With the embedding operation complete, the defect is
formed within the quantum cluster. For these calculations,
this is done by removing the central F2 ion to form aFIG. 2. Flowchart showing the series of steps involved in embedding
vacancy. With the external field parameters unchanged,a nondefective quantum cluster in an external arrangement of Gaussian

charge distributions. The symbols are defined in the text. the defective quantum cluster is geometry-optimized. Fi-
nally, the ground and excited states and other properties
of interest are calculated by the method of CASSCF.

The method outlined above is a force minimization
lence charges of the ions comprising the crystal (for in- scheme. While it is more common in quantum chemistry
stance, 12 for Ca and 21 for F in CaF2) and arranged in to follow energy minimization schemes, the energy equa-
the host lattice structure. The size of this external arrange- tions for this particular lattice embedding problem do not
ment is chosen so as to produce as close as possible the as easily lend themselves to a simple and straightforward
cluster-subtracted Madelung potentials at the quantum iterative procedure. We note that this method is nonper-
cluster nuclear sites. The cluster-subtracted Madelung po- turbative. Since the external charge source terms enter
tentials are obtained by subtracting from the Madelung into the Fock operator, the SCF procedure generates an
potentials those contributions arising from the other ions antisymmetric wave function that is fully distorted by the
comprising the quantum cluster. external field. Thus, the only approximations that enter

(4) Allow the external point ions to take on an exten- into the embedding procedure (other than the approxima-
sion in the form of a Gaussian distribution of the charge tions inherent in the SCF procedure itself) stem from the
centered about each external lattice site. By adjusting the nature and composition of the external arrangements.
charges, q(n)

i , and the Gaussian exponents, a(n)
i , on these

sites the external charge distribution can be determined
B. Mathematical Development

so that the external electrostatic forces, F (n)
ext(Rj ), applied

to the cluster nuclei exactly balance the SCF cluster forces We begin the mathematical development by considering
an external charge density rext(r) which produces an exter-previously calculated.
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nal electrostatic potential Vext (r). From classical electro- we have
statics, the external potential is given by

E(r) 5 OK
n51

OK
e51

Pne E fn (r9)fe (r9)
ur 2 r9 u3

(r 2 r9) dr9

(9)Vext (r) 5 E rext (r9)
ur 2 r9 u

dr9. (1)

1 OM
i51

Zi
r 2 Ri

ur 2 Riu3
2 ON

i51
qi =

erf [ÏaiuRex
i 2 ru]

uRex
i 2 ru

.
If we assume that the external charge density is described
by an arrangement of lattice-centered Gaussians [2, 3] then

The first two terms in Eq. (9) contain information concern-
ing the cluster only, therefore, define these first two terms

rext (r) 5 ON
i51

qi Sai

fD3/2

e2ai ur2Rex
i u2, (2)

to be Eclus(r), that is, the total field due to the quantum
mechanical electronic density and the nuclear charges. By
evaluating Eq. (9) at one of the quantum cluster nuclearwhere N is the number of external lattice sites, Rex

i locates
sites, say Rj , then the symmetry of the cluster and sur-the external lattice sites, qi is the total charge associated
rounding lattice will allow considerable simplification ofwith lattice site i, and ai is the Gaussian exponent associ-
the field and force equations. Let E9clus(Rj) represent theated with lattice site i. Substituting Eq. (2) into Eq. (1),
internal cluster field evaluated at Rj with the nuclear coreintegration produces
at Rj excluded from the sum over the nuclei. If the origin
is located on the central cluster ion as shown in Fig. 1 then,

Vext(r) 5 ON
i51

qi
erf [ÏaiuRex

i 2 ru]
uRex

i 2 ru
, (3) by symmetry, the total electric field vector must at most

have only a radial component. Therefore, the û and f̂
components of the = operator must vanish by symmetry

where the error function is defined
when evaluated at Rj . We then have

erf(x) 5
2

Ïf
Ex

0
e2u2

du. (4)
=

erf [ÏaiuRex
i 2 ru]

uRex
i 2 ru U

r5Rj

5 SRj 2 Rj ? Rex
i /Rj

uRex
i 2 Rj u2

D
The quantum cluster electronic charge density, rclus(r), is
obtained from a Hartree–Fock SCF calculation and is S2 !ai

f
exp[2aiuRex

i 2 Rj u2] 2
erf [ÏaiuRex

i 2 Rju]
uRex

i 2 Rju
D r̂

given by [12]

; Ii (Rj). (10)
rclus(r) 5 OK

n51
OK
e51

Pne fn (r)fe (r), (5)
Equation (9) then becomes

where K is the number of basis functions, Pne is the density
matrix, and fn(r) and fe(r) are the primitive Gaussian E(Rj ) 5 E9clus(Rj) 2 ON

i51
qi Ii (Rj ). (11)

basis functions of type n and e centered on cluster sites
Rn and Re . The internal quantum cluster potential Vclus(r)

For CaF2 we will choose to represent the external chargeis then
distribution by two different types of lattice-centered
Gaussians characterized by different charges and Gaussian

Vclus(r) 5 OK
n51

OK
e51

Pne E fn (r9)fe (r9)
ur 2 r9 u

dr9, (6) exponents (qF , aF) and (qCa , aCa ). Since, in principle, the
nondefective cluster in the ground state should not polarize
the surrounding lattice, one should be able to approximateand the potential due to the atomic nuclei in the cluster is
the external lattice by only ‘‘F-type’’ and ‘‘Ca-type’’ lattice-
centered Gaussians. This done, Eq. (11) becomes

Vcore(r) 5 OM
i51

Zi

ur 2 Ri u
, (7)

E(Rj) 5 E9clus(Rj) 2 qF ONF

i51
IF

i (Rj) 2 qCa ONCa

i51
ICa

i (Rj), (12)
where M is the number of nuclei in the cluster and Zi is
the nuclear charge on cluster nucleus i at site Ri . With the
total electrostatic field E(r) written as where NF and NCa are the number F-type and Ca-type

external lattice-centered Gaussians respectively. IF
i (Rj) is

E(r) 5 2=Vclus(r) 2 =Vcore(r) 2 =Vext(r), (8) given by Eq. (10) with Rex
i replaced by RF

i and ai replaced
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by aF and similarly for ICa
i (Rj), Rex

i is replaced by RCa
i and

ai by aCa .
Defining the vector functions,

KF(Rj) 5 ONF

i51
IF

i (Rj), KCa(Rj) 5 ONCa

i51
ICa

i (Rj), (13)

the total force on a nucleus with nuclear charge Zj at site
Rj in the quantum cluster is given by

F(Rj) 5 Fclus(Rj) 2 ZjqFKF(Rj) 2 ZjqCaKCa(Rj). (14)

Fclus(Rj) is the force on the nucleus at site j due to interac-
tions with the electronic charge density and the other nuclei
within the cluster and is calculated by the GAUSSIAN 92

FIG. 3. Plot of x2(Rpi
ext) vs Rpi

ext for the distribution of point ionsprogram. The terms involving the K(Rj) functions repre-
arranged outside the cluster in the CaF2 lattice structure with 21 pointsent the force on the nucleus at site j due to interactions
ions corresponding to F-sites and 12 point ions corresponding to Ca-with the external charge distribution. sites. Over this range, the lowest x2(Rpi

ext) occurs for Rpi
ext 5 21.282 bohr.

When the cluster is completely stabilized, F(Rj) 5 0.
Also since Fclus(Rj), KF(Rj), and KCa(Rj) only have compo-
nents along the r̂-direction (as defined in Fig. 1), we may symmetry operation. The Madelung potentials at these
write Eq. (14) for the stable cluster as a scalar equation. sites are given in the literature [11]. After subtracting the
Thus, contribution to the Madelung potentials at these sites due

to the presence of the quantum cluster ions, the cluster-
Fclus(Rj) 5 ZjqFKF(Rj) 1 ZjqCaKCa(Rj), (15) subtracted Madelung potentials are: f(RF0 , y) 5 20.2328

hartree, f(RF , y) 5 20.1292 hartree, f(RCa , y) 5
where it is understood that positive (negative) forces indi- 20.3099 hartree, and f(Rint , y) 5 20.1965 hartree. The
cate that the vector is directed outward (inward) along the criterion used to determine the best external lattice size
r̂-direction. Defining the scalar functions, will be to choose a finite radius R pi

ext of an external point
ion lattice such that the electrostatic potential at the four
symmetry-distinct cluster sites best approximates the clus-

JF(Rj) 5 ONF

i51

erf[ÏaFuRF
i 2 Rju]

uRF
i 2 Rju

,

(16)
ter-subtracted Madelung potentials. That is, one wishes to
minimize the function x2(R pi

ext) given by

JCa(Rj) 5 ONCa

i51

erf[ÏaCauRCa
i 2 Rju]

uRCa
i 2 Rju

,
x2(Rpi

ext) 5 (f(RF0 , y) 2 f(RF0 , R pi
ext))2

1 (f(RF , y) 2 f(RF , R pi
ext))2

(18)the electrostatic potential due to the external arrangement
1 (f(RCa , y) 2 f(RCa , R pi

ext))2of F-type and Ca-type lattice-centered Gaussians is simply

1 (f(Rint , y) 2 f(Rint , R pi
ext))2,

Vext(Rj) 5 qF JF(Rj) 1 qCa JCa(Rj). (17)

where, for instance, f(RF , Rpi
ext) is the potential at the

C. Choosing the External Lattice Size
cluster site RF due to an external CaF2 lattice of 21 and
12 point ions out to a radius Rpi

ext excluding the cluster ions.Equations (15) and (17) form the mathematical basis
for the application of this method. Before this is done While it is obvious that x2(y) is the absolute minimum,

local minima may be found for finite values of Rpi
ext asthe first step will be to choose the size of the external

arrangement of lattice-centered Gaussians. The nondefec- shown in Fig. 3. This figure shows x2(Rpi
ext) as a function

of point ion shell radius Rpi
ext out to a maximum of 40 bohrtive cluster shown in Fig. 1 contains four symmetry distinct

sites: (1) the central F2 site at RF0 , (2) an outer F2 site at encompassing 2876 point ions (excluding the cluster ions).
From this figure we see that over this range the minimumRF , (3) a Ca12 site at RCa , and (4) the interstitial site at

Rint . As a consequence, it is only necessary to solve Eqs. error occurs at Rpi
ext 5 21.282 bohr. Excluding the cluster

ions, this lattice consists of 298 sites of 21 charge (F-sites)(15) and (17) at these sites and then by symmetry they are
automatically satisfied at the other sites reachable by a and 148 sites of 1 2 charge (Ca-sites) point ions. Kunz
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TABLE I We first solve Eqs. (19) and (20) for the linear parame-
ters qF and qCa ,Values of the Cluster-Subtracted Madelung Potentials f(Rj,

y) and the External Point Ion Potentials f(Rj , Rpi
ext), at Four

Symmetry Distinct Sites, Rj , within the Nondefective Cluster
qF 5

1
A

(ZCaKCaCaFF 2 ZFKCaFFCa),

(23)
(Ca4F7)11

Rj f(Rj , y) (hartree)a f(Rj , Rpi
ext) (hartree)

qCa 5
1
A

(2ZCaKFCaFF 1 ZFKFFFCa),
F0-site 20.2328 20.2397
F-site 20.1292 20.1357

where, A 5 ZCaKCaCaZFKFF 2 ZFKCaFZCaKFCa . Substitut-Ca-site 20.3099 20.3188
ing into Eq. (21) producesInterstitial-site 20.1965 20.2011

Note. The external point ion distribution extends out to a radius of ZCaKCaCa FF JF0 2 ZFKCaF FCa JF0Rpi
ext 5 21.282 bohr and produces a x2 (Rpi

ext) value of 0.00019 hartree2.
a Calculated from data provided in Ref. [11]. 1 ZFKFF FCa JCa0 2 ZCaKFCa FF JCa0 (24)

5 ZCaKCaCaZFKFFV0 2 ZFKCaFZCaKFCaV0

and Vail [5] point out that the total charge (cluster 1
external ions) should be neutral to avoid a ‘‘spurious tun- which contains only the aF and aCa parameters. The next
neling effect.’’ In this case the total charge is 21 which is step is to scan the parameter aF using Eq. (24) to calculate
as small as could be obtained and still preserve the crystal corresponding values of aCa . Then for each ordered pair
symmetry. Table I shows the cluster-subtracted Madelung (aF , aCa), the ratio qCa/qF is calculated from Eq. (23).
potentials at the four symmetry distinct sites and the exter- The solution chosen is the one that best satisfies Eq. (22).
nal potential at these sites produced by the point ion lattice Because the external lattice is taken to be finite, we found
with Rpi

ext 5 21.282 bohr. that Eq. (22) could not be strictly satisfied in conjunction
with solutions of Eq. (24). The qCa/qF ratio is listed along

D. The Force Equations with the other parameters for each iteration of the embed-
ding process and serves as an indicator of the accuracy byWith size of the external distribution chosen using the
which Eqs. (19)–(22) are solved. A perfect solution ofpoint ion model, point ions are replaced by lattice-centered
these equations will produce a qCa/qF ratio equal to 22.Gaussians and then Eqs. (15) and (17) are solved for the

parameters qF , aF , qCa , aCa . With V0 taken to be the clus-
III. RESULTSter-subtracted Madelung potential at the central F2 site,

the following equations can be solved,
The basis set for these calculations were optimized for

the isolated cluster in the ground state [13]. Table II showsZFqFKFF 1 ZFqCaKCaF 5 FF , (19)
the results leading to the stabilization of the nondefective

ZCaqFKFCa 1 ZCaqCaKCaCa 5 FCa , (20) cluster, (Ca4F7)11, in the singlet ground state. The column
labeled Fclus(Rj)r̂ lists the forces on the F-site and Ca-siteqF JF0 1 qCa JCa0 5 V0 , (21)
nuclei calculated quantum mechanically at the Hartree–

qCa 5 22qF , (22) Fock level of theory, except for the last row where they
are calculated at the CISD level. It is important to note
that the forces in this column do not include the directwhere KFF 5 KF(RF), KCaF 5 KCa(RF), KFCa 5 KF(RCa),

KCaCa 5 KCa(RCa), JF0 5 JF(RF0), JCa0 5 JCa(RF0), FF 5 coulombic interactions between the cluster nuclei and the
surrounding external classical charge distribution but ariseFclus(RF), and FCa 5 Fclus(RCa). Note that one cannot write

a force equation for the central F2 ion since by symmetry only from the interactions among the other cluster nuclei
and the Hartree–Fock electronic density. As presentlythe net force on this ion is always zero and therefore does

not represent an independent condition. Equations (19)– written, GAUSSIAN 92 incorporates into the Fock opera-
tor the coulombic interactions between the external charge(22) represent the least complicated set of conditions to

apply toward the solution of the parameters. These equa- and the cluster electronic charge density only. Thus, the
cluster nuclei experience the presence of the externaltions are linear in the qF and qCa parameters and highly

nonlinear in aF and aCa . They cannot be solved analytically charge distribution only indirectly through its affect on
the cluster Hartree–Fock density. The direct coulombicand may not even permit a numerical solution for certain

values of the constants. The following numerical method interaction must be included separately. The next column
lists the effective charges and Gaussian exponents charac-always allows for at least an approximate numerical so-

lution. terizing the external charge distribution at the given itera-
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TABLE II

Results of the Iterative Embedding Procedure Based on Successive SCF Force Calculations and
External Lattice-Centered Gaussian Variations

Fclus(Rj)r̂ (au) New Parameters (au) Fext(Rj)r̂ (au) Fnet(Rj)r̂ (au)
Iter. F-site Ca-site qF aF qCa aCa qCa/qF F-site Ca-site F-site Ca-site

0 20.0857 20.2435 -isolated cluster- 0.0000 0.0000 20.0857 20.2435
1 20.0010 20.0902 20.710 0.030 1.432 0.018 22.017 0.0857 0.2435 0.0847 0.1533
2 20.0096 20.1037 21.067 0.025 2.142 0.020 22.007 0.0010 0.0902 20.0086 20.0136
3 20.0088 20.1024 21.028 0.025 2.065 0.020 22.009 0.0096 0.1037 0.0008 0.0013
4 20.0089 20.1026 21.032 0.025 2.073 0.020 22.009 0.0088 0.1024 20.0001 20.0001
5 20.0089 20.1026 21.032 0.025 2.072 0.020 22.008 0.0089 0.1026 0.0000 0.0000

CISD 20.0048 20.1024 -same as above- -same as above- 0.0041 0.0002

Note. This is a summary of the results applied to the nondefective (Ca4F7)11 cluster in the singlet ground state.

tion. Also listed is the ratio qCa/qF . This is followed by a calculation produces a net inward force on both the F-site
column labeled Fext(Rj)r̂ indicating the forces on the F- and the Ca-site nuclei. Next with the external lattice size
site and Ca-site cluster nuclei resulting from the direct chosen to best approximate the cluster-subtracted Made-
coulombic interaction with the classical external charge lung potentials as described in Section II.C, Eq. (24) is
distribution. The column labeled Fnet(Rj)r̂ is the vector solved subject to the condition qCa/qF P 22 for the embed-
sum of Fclus(Rj)r̂ and Fext(Rj)r̂. The goal is to minimize ding parameters so that the resulting external forces,
Fnet(Rj)r̂ by a variation of the embedding parameters qF , Fext(Rj)r̂, exactly balance the cluster forces, Fclus(Rj)r̂, of
aF , qCa , aCa , together with Hartree–Fock force calcula- the previous iteration. A new Hartree–Fock force calcula-
tions. tion is then performed to produce new cluster forces which

Figure 4 shows the net force on the F-site and the Ca- are then added to the external forces yielding the net forces
site nuclei, as well as the ratio of qCa to qF for iterations for iteration 1. This process is repeated and, as Table II
1 through 5. For iteration 0 the cluster is in isolation with shows, is rapidly convergent, giving acceptably small net
no external charge. For the isolated cluster the SCF force forces by the third iteration. To test the effects of correla-

tion, a CISD force calculaton was performed using the
parameters of iteration 5. While the resulting CISD net
forces did increase over the Hartree–Fock forces, overall
we think that the forces which include correlation are still
acceptably small, given the approximations involved in this
embedding model.

With the nondefective cluster stabilized, the F-center
cluster is then formed. Using the parameters from iteration
5 of Table II the central F2 ion is removed and an electron
is added to the quantum cluster thereby forming the
(Ca4F6Vac)11 S 5 As F-center cluster. The geometry of this
cluster is shown as Fig. 5. Modeling an electron in the
vacancy involves the placement of basis functions in a
region of space for which no nuclear core exists. Within
the GAUSSIAN 92 set of programs this is accomplished
by the use of ‘‘ghost atoms.’’ A ghost atom is a location in
space with zero nuclear charge, about which basis functions
may be located. For our purpose, the ghost atom and the
associated basis functions were used to model the elec-
tronic charge distribution within the vacancy [13]. The
atomic basis functions were chosen to physically occupy

FIG. 4. The variation of the net forces on the F-site and Ca-site most of the vacancy region with four s-type and six p-typequantum cluster nuclei as well as the ratio qca/qF for iterations 1 through
uncontracted Gaussian functions centered at the origin.5. This is a graphical representation of some of the results presented in

Table II. The elimination of the central F2 ion will unbalance the
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one could perform the embedding iterations using a corre-
lated method such as CISD. In any event, since the final
embedded orbitals form the basis for correlated methods
such as the ground and the excited state CI or CASSCF,
this embedding method is ideal for correlated embedded
cluster calculations, including those which seek to deter-
mine many-electron ground and excited state energies
(such as CASSCF).

A. The Question of Electronic Equivalence

Figure 4 shows that by the fifth iteration the net forces
on the cluster ions have converged to zero and that the
ratio of qCa to qF is 22.008, indicating that an approximate
simultaneous solution to Eqs. (19)–(22) has been achieved.
However, while the net forces on the ions may be made
negligible by this iterative process, this by itself will not

FIG. 5. Diagram of the F-center defect, (Ca4F6Vac)11, used to model ensure that sites of the same ion type will be electronically
the defect formed in CaF2 following irradiation. After embedding and equivalent within the quantum cluster. Indeed, the fifth
following relaxation, the vacancy-F and vacancy-Ca distances are 2.70 Å iteration Mulliken charges on the central and outer F2 ionsand 2.29 Å, respectively.

are 20.658 au and 20.699 au, respectively. The reason for
this difference stems from the fact that while the cluster
ions are sitting in potential minima by the end of the em-
bedding process, the values of these minima will in generalforces on the outer Ca21 and F2 ions; hence the locations
not be the same at the central and outer F2 sites. By virtueof these ions must be adjusted to new equilibrium positions.
of the fact that Eq. (21) is satisfied at each iteration, theThe parameters of iteration 5 of Table II are used to de-
external potential at the central F2 site is the cluster-sub-scribe the external charge distribution and are held con-
tracted Madlung potential, namely, 20.2328 hartree. How-stant throughout the relaxation. After several inward ad-
ever, the external potentials at the outer F2 and the Ca21justments of the Ca–Vac and F–Vac distances we obtained
sites are not constrained in this fashion so by the fifthan order of magnitude decrease in the net forces on the
iteration they are 20.2389 hartree and 20.2439 hartree,ions. The final geometry was produced by a 1.2% inward
respectively (compare with column 2 of Table I).relaxation for the F2 ions and a 3.3% inward relaxation

Earlier attempts at developing a cluster embeddingfor the nearest-neighbor Ca22 ions. The magnitude and
scheme involved the simultaneous solution to potentialdirection of these relaxations appear reasonable in view
equations for the outer F2 and the Ca21 sites, instead ofof recent calculations involving the relaxation of F-center
the force equations (19) and (20) [15]. While convergencedefects in other ionic crystals by Vail and Woodward using
was obtained for this earlier method, and the externalthe ICECAP program [14]. They describe an embedded
parameters were determined so as to reproduce the cluster-F-center in NaF for which they find a 5% inward relaxation
subtracted Madlung potential at all cluster sites, nonzeroof the nearest-neighbor Na1 ions.
forces remained on the outer F2 and the Ca21 ions. How-
ever, the final Mulliken charges on the central and outer F2

IV. FINAL COMMENTS AND
ions were in much better agreement. Thus, an all-potentialPRACTICAL IMPLICATIONS
embedding scheme produces better electronic equivalence
between the central and outer F2 ions, but it unfortunatelyIn this article we present a cluster embedding method

by which clusters of atoms, which are treated quantum leads to nonzero net forces on the cluster ions. Conse-
quently, this all-potential method was rejected for thismechanically, may be embedded in a classical distribution

of charges represented by lattice-centered Gaussians. Since study since the desired effect was to minimize the net forces
for the nondefective cluster so that the geometry of thethe classical source terms giving rise to the embedding

electrostatic field enter into the formalism through the F-center could be determined by relaxing the structure of
the quantum cluster following the removal of the centralFock operator, the Hartree–Fock orbitals generated by

the SCF procedure automatically include distortions aris- F2 ion and the addition of an electron.
ing from the external field. While we have illustrated this

B. Generalization of the Embedding Method
embedding method by calculating forces on the cluster
ions using Hartree–Fock wave functions obtained for each Given the above considerations, it is clear that the next

logical step is to generalize this method in a way so as toiteration, if one had the appropriate computer resources
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produce an external electrostatic field at each iteration that fitting core densities which would subsequently act as
source terms in the Fock operator during the embeddednot only produces forces on the cluster nuclei that balances

the SCF forces but also reproduces as closely as possible SCF calculation. We distinguish this approach from that
of Martin and Hay [10] who fit free-ion core potentialsthe cluster-subtracted Madlung potentials everywhere

within the quantum cluster region. In other words, Eq. and do not iterate. This represents a needed extension
of this method but it would not, in any essential way,(21) must be generalized. We will now briefly describe one

way of generalizing the embedding technique presented in change the basic numerical procedure outlined in this
article. Only the number and type of Gaussians wouldthis paper.

If Vext(Rj) is the external potential on a three-dimen- increase. We also note that another method, recently
discussed by Vail and Rao [16], for incorporating cluster-sional grid of points Rj within the quantum cluster region

(not necessarily nuclear sites) arising from an external embedding exchange appears to be more general, but
it is also more complicated and does not as easily lendcharge distribution characterized by the parameters qF ,

aF , qCa , aCa , then this external potential is given by itself for use with GAUSSIAN 92.
A few additional minor points should be consideredEq. (17).

Thus if Vcsmp(Rj) is the known cluster-subtracted Mad- that would further improve this technique. It is well
known that the single-determinant Hartree–Fock wavelung potential at Rj , then for each iteration one seeks

to minimize the least-squares function, functions will not by themselves produce the experimental
geometry of a cluster [12]. Since, by this method, the
SCF wave functions are determined in conjunction withO

j
[Vcsmp(Rj) 2 qF JF(Rj) 1 qCa JCa(Rj)]2 5 x2(aF , aCa),

the external lattice parameters so as to force the cluster
(25) to be stable in the experimental geometry, this will lead

to distortions in the electronic charge density. We note
that the nondefective cluster in CaF2 is composed of allwhere Rj now locates all points within the quantum

cluster. This function can be minimized while simultane- singlet closed-shell ions and thus the difference between
the ground state SCF wave functions and those obtainedously satisfying the force Eqs. (19) and (20) by substitut-

ing Eq. (23) for qF and qCa , thus making x2 a function by correlated methods should be minimal. Nevertheless,
an improvement could be realized if the final embeddingonly of aF and aCa . Thus for each embedding iteration,

the lattice parameters aF and aCa would be determined iterations are performed at a higher level of quantum
chemical theory such as CISD or MP4. Finally, we noteby minimizing x2 by a nonlinear least-squares procedure.

The iterations would be continued until both the net that one could choose to reoptimize the basis in the
presence of the external field just before the final embed-forces on the cluster ions and x2 become negligible.

Aside from the problems inherent in nonlinear least- ding iterations. However, we note that this should be
done with great care. Our preliminary results showedsquares fitting (such as local minima, or the presence of

singularities), the above generalized procedure is signifi- that when we attempt to reoptimize the basis that the
basis functions become so extended that a significantcantly more complicated and may not converge. In fact,

lack of convergence will most certainly arise if the number portion of the quantum cluster charge actually leaves the
cluster and accumulates around the external classical sites.of parameters and the degrees of freedom connected

with the description of the external lattice are insufficient The type of external lattice described thus far is
amongst the simplest of cases, namely, consisting of singleto satisfy all the desired conditions.

Another area where this method could use refinement Gaussians located at the two types of external sites in
the CaF2 lattice. While such a system may be ill-suitedwould be to model the Pauli repulsion that would be

experienced by the cluster electrons with the surrounding for describing the polarization effects on the external
lattice ions in the presence of a charged lattice defectlattice had the surrounding lattice also been treated

quantum mechanically. It is unfortunate that GAUSSIAN such as the F1 center in the alkaline earth oxides, our
results for the F-center and the Mn-perturbed F-center92 does not have a feature that allows for the introduction

of a repulsive term that would serve to enforce Pauli clusters in CaF2 show that this SCF embedding method
works quite well despite its obvious limitations and itexclusion. However, we believe that such a repulsion

could be modeled within the present scheme by placing represents a significant improvement over the use of a
truncated point ion lattice [17].at the external sites more than one Gaussian. A linear

combination of several Gaussians could be used to fit
the core density obtained from free atom calculations.
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